해당 문서의 쿠버네티스 버전: v1.22

Kubernetes v1.22 문서는 더 이상 적극적으로 관리되지 않음. 현재 보고있는 문서는 정적 스냅샷임. 최신 문서를 위해서는, 다음을 참고. 최신 버전.

확장된 리소스를 위한 리소스 빈 패킹(bin packing)

FEATURE STATE: Kubernetes v1.16 [alpha]

kube-scheduler는 RequestedToCapacityRatioResourceAllocation 우선 순위 기능을 사용해서 확장된 리소스와 함께 리소스의 빈 패킹이 가능하도록 구성할 수 있다. 우선 순위 기능을 사용해서 맞춤 요구에 따라 kube-scheduler를 미세 조정할 수 있다.

RequestedToCapacityRatioResourceAllocation을 사용해서 빈 패킹 활성화하기

쿠버네티스를 사용하면 사용자가 각 리소스에 대한 가중치와 함께 리소스를 지정하여 용량 대비 요청 비율을 기반으로 노드의 점수를 매기는 것을 허용한다. 이를 통해 사용자는 적절한 파라미터를 사용해서 확장된 리소스를 빈 팩으로 만들 수 있어 대규모의 클러스터에서 부족한 리소스의 활용도가 향상된다. RequestedToCapacityRatioResourceAllocation 우선 순위 기능의 동작은 RequestedToCapacityRatioArgs라는 구성 옵션으로 제어할 수 있다. 이 인수는 shaperesources 두 개의 파라미터로 구성된다. shape 파라미터는 사용자가 utilizationscore 값을 기반으로 최소 요청 또는 최대 요청된 대로 기능을 조정할 수 있게 한다. resources 파라미터는 점수를 매길 때 고려할 리소스의 name 과 각 리소스의 가중치를 지정하는 weight 로 구성된다.

다음은 확장된 리소스 intel.com/foointel.com/bar 에 대한 requestedToCapacityRatioArguments 를 빈 패킹 동작으로 설정하는 구성의 예시이다.

apiVersion: kubescheduler.config.k8s.io/v1beta1
kind: KubeSchedulerConfiguration
profiles:
# ...
  pluginConfig:
  - name: RequestedToCapacityRatio
    args: 
      shape:
      - utilization: 0
        score: 10
      - utilization: 100
        score: 0
      resources:
      - name: intel.com/foo
        weight: 3
      - name: intel.com/bar
        weight: 5

kube-scheduler 플래그 --config=/path/to/config/file 을 사용하여 KubeSchedulerConfiguration 파일을 참조하면 구성이 스케줄러에 전달된다.

이 기능은 기본적으로 비활성화되어 있다.

우선 순위 기능 튜닝하기

shapeRequestedToCapacityRatioPriority 기능의 동작을 지정하는 데 사용된다.

shape:
 - utilization: 0
   score: 0
 - utilization: 100
   score: 10

위의 인수는 utilization 이 0%인 경우 score 는 0, utilization 이 100%인 경우 10으로 하여, 빈 패킹 동작을 활성화한다. 최소 요청을 활성화하려면 점수 값을 다음과 같이 변경해야 한다.

shape:
  - utilization: 0
    score: 10
  - utilization: 100
    score: 0

resources 는 기본적으로 다음과 같이 설정되는 선택적인 파라미터이다.

resources:
  - name: cpu
    weight: 1
  - name: memory
    weight: 1

다음과 같이 확장된 리소스를 추가하는 데 사용할 수 있다.

resources:
  - name: intel.com/foo
    weight: 5
  - name: cpu
    weight: 3
  - name: memory
    weight: 1

weight 파라미터는 선택 사항이며 지정되지 않은 경우 1로 설정 된다. 또한, weight 는 음수로 설정할 수 없다.

용량 할당을 위해 노드에 점수 매기기

이 섹션은 이 기능 내부의 세부적인 사항을 이해하려는 사람들을 위한 것이다. 아래는 주어진 값의 집합에 대해 노드 점수가 계산되는 방법의 예시이다.

요청된 리소스는 다음과 같다.

intel.com/foo : 2
memory: 256MB
cpu: 2

리소스의 가중치는 다음과 같다.

intel.com/foo : 5
memory: 1
cpu: 3

FunctionShapePoint {{0, 0}, {100, 10}}

노드 1의 사양은 다음과 같다.

Available:
  intel.com/foo: 4
  memory: 1 GB
  cpu: 8

Used:
  intel.com/foo: 1
  memory: 256MB
  cpu: 1

노드 점수는 다음과 같다.

intel.com/foo  = resourceScoringFunction((2+1),4)
               = (100 - ((4-3)*100/4)
               = (100 - 25)
               = 75                       # requested + used = 75% * available
               = rawScoringFunction(75) 
               = 7                        # floor(75/10) 

memory         = resourceScoringFunction((256+256),1024)
               = (100 -((1024-512)*100/1024))
               = 50                       # requested + used = 50% * available
               = rawScoringFunction(50)
               = 5                        # floor(50/10)

cpu            = resourceScoringFunction((2+1),8)
               = (100 -((8-3)*100/8))
               = 37.5                     # requested + used = 37.5% * available
               = rawScoringFunction(37.5)
               = 3                        # floor(37.5/10)

NodeScore   =  (7 * 5) + (5 * 1) + (3 * 3) / (5 + 1 + 3)
            =  5

노드 2의 사양은 다음과 같다.

Available:
  intel.com/foo: 8
  memory: 1GB
  cpu: 8
Used:
  intel.com/foo: 2
  memory: 512MB
  cpu: 6

노드 점수는 다음과 같다.

intel.com/foo  = resourceScoringFunction((2+2),8)
               =  (100 - ((8-4)*100/8)
               =  (100 - 50)
               =  50
               =  rawScoringFunction(50)
               = 5

Memory         = resourceScoringFunction((256+512),1024)
               = (100 -((1024-768)*100/1024))
               = 75
               = rawScoringFunction(75)
               = 7

cpu            = resourceScoringFunction((2+6),8)
               = (100 -((8-8)*100/8))
               = 100
               = rawScoringFunction(100)
               = 10

NodeScore   =  (5 * 5) + (7 * 1) + (10 * 3) / (5 + 1 + 3)
            =  7

다음 내용

최종 수정 October 11, 2021 at 6:08 PM PST : [ko] Update scheduling-eviction (f5981bc70)